posted by organizer: ensmirnov || 1027 views || tracked by 1 users: [display]

MAASDATA 2019 : 12th MAASTRICHT SCHOOL ON DATA SCIENCE

FacebookTwitterLinkedInGoogle

Link: https://project.dke.maastrichtuniversity.nl/datamining/
 
When Jun 26, 2019 - Jun 28, 2019
Where Maastricht, The Netherlands
Submission Deadline TBD
Categories    data science   course
 

Call For Papers

*********************************************************************
** **
** 12th MAASTRICHT SCHOOL ON DATA SCIENCE, **
** Department of Data Science and Knowledge Engineering **
** Maastricht University, **
** Maastricht, The Netherlands **
** **
** June 26 - June 28, 2019 **
** **
** https://project.dke.maastrichtuniversity.nl/datamining/ **
** **
** Apologies if you receive multiple copies of this announcement **
** Please forward to anyone who might be interested **
** **
*********************************************************************

School on Data Science

An intensive 3-day introduction to methods and applications of data science

Department of Data Science and Knowledge Engineering, Maastricht University,
Maastricht, The Netherlands

June 26 - June 28, 2019


Introduction
With the promises of Data Science, modern organisations collect terabytes of
data related to their function, market share, business activities, and daily
operation. Usually the data collected provides only a low level view of the
"facts and figures", and Data Science can help to translate this data into
knowledge that can be used to understand and eventually improve the overall
performance of the organisations. Data Science employes techniques from
statistics, machine learning, artificial intelligence, and computer science.
It has been successfully applied in many domains including Business, Medicine,
Biology, Economics, Military, etc. As a result, most organisations are
starting to recognise their need for data scientists specialists, and this is
where this school can be of help.

Description
Our school on data science balances both theory and practice. We think it is
important to not only learn to use the available techniques, but to also apply
them correctly and when appropriate. Each lecture is accompanied by a lab
in which participants experiment with the techniques introduced in the lecture.
A number of real data sets will be analysed and discussed. Throughout the
duration of the school participants develop their own abilities to safely and
reliably apply data-science techniques for business and research purposes.

Content
The school will cover the topics listed below.

- Knowledge Discovery Process

+ Data Collection and Preparation
+ Feature Selection: Filters, Wrappers, Embedded Methods


- Machine Learning Techniques:

+ Regression: Linear Regression, Ridge Regression, LASSO,
Nearest Neighbor Regression, Regression Trees,
Model Trees

+ Classification: Logistic Regression, Support Vector Machines,
Decision Trees, Decision Rules, Nearest Neighbor
Classification

+ Clustering: k-means, hierarchical clustering, DBSCAN, and
validation

+ Association rules: Apriori, frequent item mining, rule generation

+ Deep Learning: Classical Feedforward Neural Nets, Convolutional
Neural Networks, Regularization, Recurrent Neural
Networks, and GANs

- Model Validation: Hold-out Validation, Cross Validation, ROC Analysis etc.



Intended Audience:

This school is intended for four groups of data-science beginners: students,
scientists, engineers, and experts in specific fields who need to apply data-
science techniques to their scientific research, business management, or other
related applications.



Prerequisites:

No special knowledge in statistics, artificial intelligence, or machine learning
is required. An affinity with science is sufficient as is a high degree of enthusiasm
for new scientific approaches.



Registration:

To register for the school please send an email to:

smirnov@maastrichtuniversity.nl
kurt.driessens@maastrichtuniversity.nl
(Please send the registration to both e-mails)


In the e-mail please specify: your name, university/organisation, address, phone, e-mail

Registration Deadline: June 24, 2019


Registration fees:
Academic fee 840 Euros
Non-academic fee 1680 Euros
(to be paid after the School)




Contact:

Evgueni Smirnov and Kurt Driessens
Department of Data Science and Knowledge Engineering
Faculty of Humanities and Sciences
Maastricht University
P.O.Box 616 6200 MD Maastricht
The Netherlands

Phone: +31 (0) 43 38 82023
Fax: +31 (0) 43 38 84897

E-mails: smirnov@maastrichtuniversity.nl
kurt.driessens@maastrichtuniversity.nl

Related Resources

IEEE CNCIT 2025   2025 4th International Conference on Networks, Communications and Information Technology (CNCIT 2025)
ACM SAC 2025   40th ACM/SIGAPP Symposium On Applied Computing
SPIE-Ei/Scopus-DMNLP 2025   2025 2nd International Conference on Data Mining and Natural Language Processing (DMNLP 2025)-EI Compendex&Scopus
BioINSP 2025   8th International School and Conference on Biological Materials Science - Bioinspired Materials 2026
ICCNS--EI 2025   2025 15th International Conference on Communication and Network Security (ICCNS 2025)
SPIE-Ei/Scopus-CMLDS 2025   2025 2nd International Conference on Computing, Machine Learning and Data Science (CMLDS 2025) -EI Compendex & Scopus
ICCIP 2025   2025 The 11th International Conference on Communication and Information Processing (ICCIP 2025)
WITCOM 2025   The 14th International Congress in Telematics and Computing
CMIT 2025   13th International Conference of Managing Information Technology
ICoSR 2025   2025 4th International Conference on Service Robotics