posted by organizer: kdoh || 2434 views || tracked by 4 users: [display]

EAs for Problems with Uncertainty 2018 : Workshop on Evolutionary Algorithms for Problems with Uncertainty

FacebookTwitterLinkedInGoogle

Link: http://eapwu.ex.ac.uk
 
When Jul 15, 2018 - Jul 16, 2018
Where Kyoto
Submission Deadline Mar 27, 2018
Notification Due Apr 10, 2018
Final Version Due Apr 24, 2018
Categories    computing   evolutionary algorithms   uncertainty   GECCO
 

Call For Papers

Dear Colleagues,

We have the pleasure of announcing the 1st Workshop on Evolutionary Algorithms for Problems with Uncertainty: http://eapwu.ex.ac.uk/.

To be held in partnership with the Genetic and Evolutionary Computation
Conference (GECCO 2018), Kyoto, Japan, 15-19 July 2018.

In many real-world optimisation problems, uncertainty is present in various forms. One prominent example is the sensitivity of the optimal solution to noise or perturbations in the environment. In such cases, handling uncertainty effectively can be critical for finding good robust solutions, in particular, when the uncertainty results in severe loss of quality. In recent years, uncertainty in its various forms has attracted a lot of attention from the evolutionary computation community.

Optimisation problems can be categorised as one of four types, depending on the source of uncertainty:

1. robust problems, where the uncertainty arises in design or environmental variables,

2. noisy problems, where the uncertainty arises in objective space,

3. approximated problems, where approximated objective function(s) are subject to error, and

4. dynamic problems, where the objective function(s) changes over time.

Robust optimisation includes situations where the chosen design cannot be realised in a real-world setting without some error. Additionally, the solution may need to perform well under a set of different scenarios and/or under some assumptions of parameter drifts. Typically, explicit methods for handling this type of uncertainty rely on resampling the assumed scenario set in order to approximate the underlying robust fitness landscape. Noisy optimisation refers to problems in which the estimate of the quality of an individual is subject to some randomness, e.g. if the objective value is calculated from the output of a stochastic simulation or solver. In this case, the estimate of the expected objective value is usually based on several resamples of a given solution. However, methods that rely on resampling of solutions are often inadequate in situations where the evaluations are expensive.

These problems have been a concern for the community for a number of years, and there is a growing need for new methods to handle the various types of uncertainty in a wide variety of problem domains. In addition, the field stands to benefit greatly from new methods for assessing the performance of algorithms for optimisation in uncertain environments and development of suitable benchmark problems. This workshop is designed to bring together practitioners from different subfields in the evolutionary computing community to share their ideas and methods.

Particular topics of interest include, but are not limited to:

Efficient methods for optimisation under uncertainty
Studies of the inherent capabilities of EAs to handle different types of uncertainty
New ranking and selections operators for optimising under uncertainty
Meta-modelling for handling uncertainty
Methods for fitness approximation under uncertainty
Quantifying the robustness of solutions
Real-World applications that suffer from various types of uncertainty
New benchmark problems for various types of uncertainty
Design of experiments for estimating robust designs
Coping with multiple sources and forms of uncertainty
Multi-objective optimisation in uncertain contexts
Casting a problem with uncertainty as a multi-objective problem

SUBMISSIONS:

Abstracts must not exceed 200 words and the maximum length of papers is 8 pages. We also welcome position papers of up to 2 pages showcasing exciting exploratory and preliminary results. Authors should follow the GECCO Submission Instructions and submissions should be sent through the GECCO Submission Site. Accepted papers will be published in the GECCO Companion Proceedings and will be presented orally at the workshop.

ORGANISERS:

Ozgur Akman, Senior Lecturer, University of Exeter

Khulood Alyahya, Research Fellow, University of Exeter

Juergen Branke, Professor of Operational Research & Systems, University of Warwick

Kevin Doherty, Research Fellow, University of Exeter

Jonathan Fieldsend, Associate Professor, University of Exeter

Related Resources

UAI 2024   40th Conference on Uncertainty in Artificial Intelligence
IEEE-Ei/Scopus-ITCC 2025   2025 5th International Conference on Information Technology and Cloud Computing (ITCC 2025)-EI Compendex
CCITT 2025   4th International Conference on Computing and Information Technology Trends
SPIE-Ei/Scopus-DMNLP 2025   2025 2nd International Conference on Data Mining and Natural Language Processing (DMNLP 2025)-EI Compendex&Scopus
COPA 2025   14th Symposium on Conformal and Probabilistic Prediction with Applications
IEEE-Ei/Scopus-CNIOT 2025   2025 IEEE 6th International Conference on Computing, Networks and Internet of Things (CNIOT 2025) -EI Compendex
UR@FLAIRS 2025   Special Track on Uncertain Reasoning at FLAIRS-38
IEEE CACML 2025   2025 4th Asia Conference on Algorithms, Computing and Machine Learning (CACML 2025)
IEEE CEC 2025   IEEE Congress on Evolutionary Computation
IJSC 2024   International Journal on Soft Computing