posted by user: michalwozniak || 2401 views || tracked by 4 users: [display]

LD2 2018 : LEARNING FROM DIFFICULT DATA

FacebookTwitterLinkedInGoogle

Link: http://www.smc2018.org/approved-special-sessions/c14-learning-from-difficult-data/
 
When Oct 7, 2018 - Oct 10, 2018
Where Miyazaki, Japan
Submission Deadline Mar 31, 2018
Notification Due Jun 1, 2018
Final Version Due Jul 20, 2018
Categories    machine learnig   pattern classification   imbalanced data   difficult data
 

Call For Papers

Difficulties embedded within characteristics of real-life data pose various challenges to contemporary machine learning algorithms. The performance of learning algorithms may be strongly impaired by adverse data characteristics, such as data velocity, imbalanced distributions, high number of classes, high-dimensional feature spaces, small or extremely high number of learning examples, limited access to ground truth, data incompleteness, or concept drift (i.e., parameter change of the probabilistic characteristics describing data), to enumerate only a few.
The main aim of this section is to bring together researchers and scientists from basic computing disciplines (computer science and mathemathics) and researchers from various application areas who are pioneering data analysis methods in sciences, as well as in humanitarian fields, to discuss problems and solutions in the area of data difficulties, to identify new issues, and to shape future directions for research.

The list of possible topics includes, but is not limited to:

class imbalanced learning
learning from data streams
learning in the presence of concept drift
learning with limited ground truth access
learning from high dimensional data
learning on the basis of limited data sets, including one-shot learning
instance and prototype selection
data imputation methods
case studies and real-world applications affected by data difficulties

Session Chairs
Bartosz Krawczyk (bkrawczyk@vcu.edu),
Virginia Commonwealth University, USA
Michal Wozniak (michal.wozniak@pwr.edu.pl),
Wroclaw University of Science and Technology, Poland

Related Resources

Ei/Scopus-CCNML 2025   2025 5th International Conference on Communications, Networking and Machine Learning (CCNML 2025)
Ei/Scopus-SGGEA 2025   2025 2nd Asia Conference on Smart Grid, Green Energy and Applications (SGGEA 2025)
Ei/Scopus-AI2A 2025   2025 5th International Conference on Artificial Intelligence, Automation and Algorithms (AI2A 2025)
IEEE-MLNLP 2025   2025 IEEE 8th International Conference on Machine Learning and Natural Language Processing (MLNLP 2025)
ACM SAC 2025   40th ACM/SIGAPP Symposium On Applied Computing
AAIML 2026   IEEE--2026 International Conference on Advances in Artificial Intelligence and Machine Learning
S+SSPR 2026   Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition and Structural and Syntactic Pattern Recognition
EPSEE 2025   2025 4th International Conference on Advanced Electric Power System and Energy Engineering (EPSEE 2025)
ICMLSC 2026   2026 The 10th International Conference on Machine Learning and Soft Computing (ICMLSC 2026)
CVAI 2026   2026 International Symposium on Computer Vision and Artificial Intelligence (CVAI 2026)