posted by user: gonzo1453 || 3770 views || tracked by 6 users: [display]

CHIL 2020 : ACM Conference on Health, Inference, and Learning

FacebookTwitterLinkedInGoogle

Link: https://www.chilconference.org/
 
When Apr 2, 2020 - Apr 4, 2020
Where Toronto, Canada
Submission Deadline Jan 13, 2020
Notification Due Feb 17, 2020
Final Version Due Mar 6, 2020
Categories    bayesian learning   causal inference   explainability   inference
 

Call For Papers

There are 4 tracks:

Track 1: Machine Learning
Track 2 Applications: Investigation, Evaluation, and Interpretation
Track 3 Policy: Impact, Economics, and Society
Track 4: Practice

Advances in machine learning are critical for a better understanding of health. Track 1 Machine Learning seeks contributions in modeling, inference, and estimation in health-focused or health-inspired settings. We welcome submissions that develop novel methods and algorithms, introduce relevant machine learning tasks, or identify challenges with prevalent approaches. Submissions focused more on health applications, for example establishing baselines or suggesting new evaluation metrics for assessing algorithmic advances are encouraged to submit to Track 2 instead.

While submissions should address problems relevant to health, the contributions themselves are not required to be directly applied to health. For example, authors may use synthetic datasets and experiments to demonstrate the properties of algorithms.

Authors may consider one or more machine learning sub-discipline(s) from the following list: .

Bayesian learning
Causal inference
Computer vision
Deep learning architectures
Evaluation methods
Inference
Knowledge graphs
Natural language processing
Reinforcement Learning
Representation learning
Robust learning
Structured learning
Supervised learning
Survival analysis
Time series
Transfer learning
Unsupervised learning
Explainability
Algorithmic Fairness

Authors may also consider sub-disciplines not listed here.

The goal of Track 2 Applications is to highlight works applying robust methods, models, or practices to identify, characterize, audit, evaluate, or benchmark systems. Whereas the goal of Track 1 is to select papers that show significant technical novelty, submit your work here if the contribution is more focused on solving a carefully motivated problem grounded in applications.

Related Resources

ICML 2024   International Conference on Machine Learning
IEEE-Ei/Scopus-ITCC 2025   2025 5th International Conference on Information Technology and Cloud Computing (ITCC 2025)-EI Compendex
SPIE-Ei/Scopus-DMNLP 2025   2025 2nd International Conference on Data Mining and Natural Language Processing (DMNLP 2025)-EI Compendex&Scopus
IEEE-Ei/Scopus-CNIOT 2025   2025 IEEE 6th International Conference on Computing, Networks and Internet of Things (CNIOT 2025) -EI Compendex
IEEE-Ei/Scopus-CWCBD 2025   2025 6th International Conference on Wireless Communications and Big Data (CWCBD 2025) -EI Compendex
SPIE-Ei/Scopus-CMLDS 2025   2025 2nd International Conference on Computing, Machine Learning and Data Science (CMLDS 2025) -EI Compendex & Scopus
CHIL 2024   5th AHLI Conference on Health, Inference, and Learning
ACM SAC 2025   40th ACM/SIGAPP Symposium On Applied Computing
ICSTTE 2025   2025 3rd International Conference on SmartRail, Traffic and Transportation Engineering (ICSTTE 2025)
ICDTHT 2025   ICDTHT´25 - The 2025 International Conference on Demographic Transition, Health and Technologies