| |||||||||||||||
Elsevier 2020 : Call for Elsevier book chapter proposal: Multi-Objective Combinatorial Optimization Problems and Solution Methods | |||||||||||||||
Link: https://cutt.ly/jtgsDNj | |||||||||||||||
| |||||||||||||||
Call For Papers | |||||||||||||||
Call for book chapter proposal (Elsevier):
Editors: -Professor Mehdi Toloo, Technical University of Ostrava, Ostrava, Czech Republic (mehdi.toloo@vsb.cz) University of Torino, Torino, Italy (mehdi.toloo@unitio.it) Sultan Qaboos University, Muscat, Oman (m.toloo@squ.edu.om) -Professor Siamak Talatahari, University of Tabriz, Tabriz, Iran and Near East University, North Cyprus, Turkey (Talatahari@tabrizu.ac.ir, Siamak.Talat@gmail.com). -Dr. Iman Rahimi, Universiti Putra Malaysia, Malaysia, and Young Researchers and Elite Club, Iran (iman83@gmail.com). Project summary: Combinatorial optimization problems appear in a wide range of applications in operations research, engineering, biological sciences and computer science. Many combinatorial optimization approaches have been developed that link the discrete universe to the continuous universe through geometric, analytic, and algebraic techniques. Optimization problems with multi-objective arise in a natural fashion in most disciplines and their solution has been a challenge to researchers for a long time. Despite the considerable variety of techniques developed in Operations Research (OR) and other disciplines to tackle these problems, the complexities of their solution calls for alternative approaches. In this book, we will discuss the results of a recent multi-objective combinatorial optimization achievement considering metaheuristic, mathematical programming, heuristic, hyper heuristic, and hybrid approaches. In other words, this book intends to show a diversity of various multi-objective combinatorial optimization issues that may benefit from different methods in theory and practice. -A non-exhaustive list of topics we invite to be considered for inclusion in this book are as follows: 1. Basic concepts of combinatorial optimization Chapter 1 presents and motivates MOP terminology and the nomenclature used in successive chapters including a lengthy discussion on theimpact of computational limitations on finding the Pareto front along with insight to MOP concepts. 2. Random methods for combinatorial optimization problems 2.1. Metaheuristic 2.1.1. Population-based methods 2.1.1.1. Multi-objective Evolutionary Algorithm (MOEA) Approaches MOEA developmental history has proceeded in a number of ways from aggregated forms of single-objective Evolutionary Algorithms (EAs) to true multiobjective approaches and their extensions. Each MOEA is presented with historical and algorithmic insight. Being aware of the many facets of historical multiobjective problem solving provides a foundational understanding of the discipline. 2.1.1.2. Multi-objective swarm intelligence algorithms Multi-objective particle swarm optimization, multi-objective ant colony optimization,… 2.1.2. Trajectory methods Simulated annealing, Tabu search,… 2.1.3. Coevolution and hybrid of MOEA Local Search Both coevolutionary MOEAs and hybridizations of MOEAs with local search procedures are covered. 2.2. Heuristic algorithms 2.2.1. Improvement heuristics 2.2.2. Constructive heuristics 2.3. Relaxation algorithms E.g. Lagrangian relaxation 2.4. Decomposition algorithms Benders decomposition algorithm 2.5. Column generation 3. Enumerate methods for combinatorial optimization problems E.g. Dynamic programming 4. Deterministic methods for combinatorial optimization problems 4.1. Linear programming methods Goal programming,… 4.2. Branching algorithms This chapter presents well-known branching algorithms such as branch&cut, branch&price, branch& bound. 5. Many-objective combinatorial optimization problems This chapter presents multi-objective combinatorial optimization in the case of more than three objectives along with solution approaches. Schedule Chapter proposals May 15, 2020 Decisions from editors May 30, 2020 Full submission of chapters July 15, 2020 Feedback of reviews October 31, 2020 Revised chapter submission November 30, 2020 Final acceptance notifications December 30, 2020 Please submit your proposal here:https://cutt.ly/jtgsDNj |
|