| |||||||||||||||
CML-HIPEAC-CSW 2022 : Collaborative Machine Learning across IoT, Edge, Fog and Cloud Devices for Improved Privacy and Resilience | |||||||||||||||
Link: https://www.hipeac.net/csw/2022/tampere/#/program/sessions/7974/ | |||||||||||||||
| |||||||||||||||
Call For Papers | |||||||||||||||
================================================================================
CALL FOR CONTRIBUTIONS Thematic Session on "Collaborative Machine Learning across IoT, Edge, Fog and Cloud Devices for Improved Privacy and Resilience" Part of HiPEAC Computer System Week Spring 2022, Tampere https://www.hipeac.net/csw/2022/tampere April 27, 2022 ================================================================================ ABOUT THE SESSION Machine Learning (ML) and Deep Learning (DL) techniques progressed tremendously in the last decade and are now well understood, and widely used, but generally as monoliths. Datasets are centralized prior to being used for training. Similarly, inference input data is gathered at the monolith entrance, and inference is generally performed at a single location. However, fundamentally, both training and inference processes can be divided over multiple devices and/ or locations. The resulting Collaborative ML/DL can provide significant benefits in terms of privacy (original data remains on the edge/IoT, no big dataset collections) and resilience (a loss of one or more device or location can be compensated for). At the same time, Collaborative ML/DL comes with many additional operational constraints in terms of device maintenance, orchestration and ML-OPS, in particular due to sharding. Finally, it is unclear whether Collaborative ML/DL is an obstacle to or rather an enabler of scaling. Impacts on energy efficiency are also to be assessed, as collaboration certainly induces extra costs, but also opens room for data-movement optimizations. This special session intends to gather current and possible future Collaborative ML/DL practitioners, to share opinions on the viability of the approach, on the benefits to be claimed in practice, and on the biggest challenges faced in the wild. One of the targeted objectives of the session to find answers to questions such as: - Is federated learning only good at preserving privacy? Or has it other advantages that could outweigh the complexity of the distribution? - Should ML/DL models be designed specifically for a collaborative environment? - How much compute time and energy can be saved through early exiting? - How to leverage Collaborative ML/DL (or Federated Learning) for best resilience? - Considering a possible vast amount of IoT devices, how to maintain efficiency under scalability constraints? - What are the most promising anticipated research directions? CALL FOR CONTRIBUTIONS For the thematic session at HiPEAC Computing System Week, we are seeking presentations on the following topics: - Federated ML - distribution of training or inference over multiple items - Edge/cloud inference division - early exit, optimization - Model breakup due to IoT hardware limitations - Training/interference distribution costs modeling - ML-ops in collaborative environments - Collaborative machine learning at large - performing ML over multiple-locations In order to perform a selection, interested contributors must submit either - A one-page extended abstract detailing a research contribution or - A position paper of up to two pages describing how Collaborative ML is seen as a challenge or an opportunity Please send contributions in the form of plain text or pdf via email to the organizers of the thematic session. Submissions will be reviewed by the TPC of the thematic session, and accepted contributions will be given the opportunity to present the proposed content during the thematic session. Furthermore, the organizers plan to summarize the insights and outcome of this session in the form of a joint position paper. Given the short timeframe, anyone considering to contribute or attend the session is strongly encouraged to contact us (co-organizers below) by email so that we can orient him/her. IMPORTANT DATES Submission deadline: March 24, 2022 Notification: April 1, 2022 Thematic session: April 27, 2022 ORGANIZERS Sébastien Rumley, iCoSys institute, HES-SO, Switzerland (sebastien.rumley@hefr.ch) Holger Fröning, Heidelberg University, Germany (holger.froening@ziti.uni-heidelberg.de) TECHNICAL PROGRAM COMMITTEE Jean-Frédéric Wagen (HES-SO, Switzerland) Antonio di Maio (University of Bern, Switzerland) Gregor Schiele (University of Duisburg-Essen, Germany) Michaela Blott (XILINX/AMD, Ireland) Laurent Lefevre (ENS-Lyon, France) Hari Subramoni (Ohio State University, US) Denis Trystram (LIG Grenoble, France) Madeleine Glick (Columbia University, US) |
|