posted by organizer: Aholzinger || 3540 views || tracked by 5 users: [display]

HCI-KDD@AMT 2014 : Special Session on Advanced Methods of Interactive Data Mining for Personalized Medicine

FacebookTwitterLinkedInGoogle

Link: http://www.hci4all.at/hci-kdd-amt2014/
 
When Aug 11, 2014 - Aug 11, 2014
Where Warsaw
Submission Deadline Apr 13, 2014
Final Version Due May 11, 2014
Categories    knowledge discovery   interactive data mining   big data   personalized medicine
 

Call For Papers

One of the grand challenges in the life sciences are the large, complex, multi-dimensional and weakly structured data sets (big data). These increasingly enormous amounts of data require new, efficient and user-friendly solutions for data mining and knowledge discovery. The trend towards personalized medicine has resulted in an explosive growth in the amount of generated (-omics) data from various sources. A synergistic combination of methodologies and approaches of two areas offer ideal conditions towards solving these challenges: Human-Computer Interaction (HCI) and Knowledge Discovery/Data Mining (KDD), with the goal of supporting human intelligence with machine intelligence – to discover new, previously unknown insights into the data. In this special session we will focus on three promising research topics:

1) Interactive Graph-based data mining,
2) Interactive Entropy-based data mining, and
3) Interactive Topological data mining.

For example, applying topological techniques to data mining and knowledge discovery is a hot and promising future topic. Topological methods can be applied to data represented by point clouds, that is, finite subsets of the n-dimensional Euclidean space. We can think of the input as a sample of some unknown space which one wishes to reconstruct and understand. One must distinguish between the ambient (embedding) dimension n, and the intrinsic dimension of the data. While n is usually high, the intrinsic dimension, being of primary interest, is typically small. Therefore, knowing the intrinsic dimensionality of data is the first step towards understanding its structure. In addition to the expected results gained from basic research, benefits to evidence based medicine, treatment and public health can be achieved.

This special session particularly focuses on building a small but beautiful expert group for joint project proposals

Related Resources

AMLDS 2026   IEEE--2026 2nd International Conference on Advanced Machine Learning and Data Science
CFP-CIPCV-EI/SCOPUS 2026   The 2026 4th International Conference on Intelligent Perception and Computer Vision
IEEE MetroXRAINE Thematic Session 7 2025   Shaping the Future of Interaction: Integrating AI, Human Factors, and Immersive Technologies in HCI
ICPRAM 2026   15th International Conference on Pattern Recognition Applications and Methods
Ei/Scopus-CEICE 2026   2026 3rd International Conference on Electrical, Information and Communication Engineering (CEICE 2026)
IEEE-Ei/Scopus-PRDM 2025   2025 6th International Conference on Pattern Recognition and Data Mining (PRDM 2025)
ACX 2026   The 1st Annual Workshop on Advanced Computing and Experimental Sciences
Ei/Scopus-EECT 2026   2026 IEEE 6th International Conference on Advances in Electrical, Electronics and Computing Technology (EECT 2026)
IEEE-ISRIMT 2025   2025 7th International Symposium on Robotics & Intelligent Manufacturing Technology-IEEE Xplore/EI/Scopus