posted by organizer: faicel || 5624 views || tracked by 7 users: [display]

uLearnBio@ICML 2014 : ICML2014-Workshop on Unsupervised Learning from Bioacoustic Big Data

FacebookTwitterLinkedInGoogle

Link: http://sabiod.univ-tln.fr/ulearnbio/
 
When Jun 25, 2014 - Jun 26, 2014
Where Beijing, China
Submission Deadline Apr 13, 2014
Notification Due Apr 28, 2014
Final Version Due May 30, 2014
Categories    machine learning   statistics   signal processing   bioacoustics
 

Call For Papers


uLearnBio@ICML 2014: Workshop on Unsupervised Learning from Bioacoustic Big Data
joint to ICML 2014 - Int. Conference on Machine Learning - 25/26 June, Beijing, China
http://sabiod.univ-tln.fr/ulearnbio/

2nd call for paper - Main topics (not limited to):
Unsupervised generative learning on big data
Latent data models
Model-based clustering
Bayesian non-parametric clustering
Bayesian sparse representation
Feature learning
Deep neural net
Bioacoustics
Environmental scene analysis
Big Bio-acoustic data structuration
Species clustering (birds, whales...)

Deadlines :
13th April for regular paper,
or
30th may for keynote paper on one of the technical challenge.

The general topic of uLearnBio is machine learning from bioacoustic data, supervised method but also unsupervised feature learning and clustering from bioacoustic data. A special session will concern cluster analysis based on Bayesian Non-Parametrics (BNP), in particular the Infinite Gaussian Mixture Model (IGMM) formulation, Chinese Restaurant Process (CRP) mixtures and Dirichlet Process Mixtures (DPM).
The non-parametric alternative avoids assuming restricted functional forms and thus allows the complexity and accuracy of the inferred model to grow as more data is observed. It also represents an alternative to the difficult problem of model selection in model-based clustering models by inferring the number of clusters from the data as the learning proceeds.
ICMLulb offers an excellent framework to see how parametric and nonparametric probabilistic models for cluster analysis can perform to learn from complex real bio-acoustic data. Data issued from bird songs, whale songs, are provided in the framework of challenges as in our previous ICML and NIPS Workshops on learning from bio-acoustic data (ICML4B and NIPS4B books are available at http://sabiod.org ).

ICMLuLearnBio will bring ideas on how to proceed in understanding bioacoustics to provide methods for biodiversity indexing. The scaled bio-acoustic data science is a novel challenge for AI. Large cabled submarine acoustic observatory deployments permit data to be acquired continuously, over long time periods. For examples, submarine Neptune observatory in Canada, Antares or Nemo neutrino detectors, or PALAOA in Antartic (cf NIPS4B proc.) are 'big data' challenges. Automated analysis, including clustering/segmentation and structuration of acoustic signals, event detection, data mining and machine learning to discover relationships among data streams promise to aid scientists in discoveries in an otherwise overwhelming quantity of acoustic data.

In addition to the two previously announced challenges (Parisian bird and Whale challenges), we open a 3rd challenge on 500 amazonian bird species linked to the LifeClef Bird challenge 2014 but into an unsupervised way, over 9K .wav files.

Details on challenges : http://sabiod.univ-tln.fr/ulearnbio/challenges.html

Confirmed Invited Speakers:
Pr. G. McLachlan - Department of mathematics - University of Queensland, AU,
Dr. F. Chamroukhi - LSIS CNRS - Toulon Univ, FR,
Dr. P. Dugan - Ornithology Bioacoustics Lab - Cornell Univ, USA.

More information on open challenges = http://sabiod.org

Best regards, the organizers,
Dr. F. Chamroukhi - LSIS CNRS - Toulon Univ,
Pr. H. Glotin - LSIS CNRS - Institut Universitaire de France - Toulon Univ,
Dr. P. Dugan - Ornithology Bioacoustics Lab - Cornell Univ, NY,
Pr. C. Clark - Ornithology Bioacoustics Lab - Cornell Univ, NY,
Pr. T. Artières - LIP6 CNRS - Sorbonne Univ, Paris,
Pr. Y. LeCun - Computational & Biological Learning Lab - NY Univ - Facebook Research Center, NY.

Related Resources

IEEE Big Data - MMAI 2025   IEEE Big Data 2025 Workshop on Multimodal AI
Ei/Scopus-ITCC 2026   2026 6th International Conference on Information Technology and Cloud Computing (ITCC 2026)
IEEE-AIBDF 2025   2025 5th International Symposium on Artificial Intelligence and Big Data
Ei/Scopus-CMLDS 2026   2026 3rd International Conference on Computing, Machine Learning and Data Science (CMLDS 2026)
Learning & Optimization 2026   ASCE EMI Minisymposium on Probabilistic Learning, Stochastic Optimization, and Digital Twins
AMLDS 2026   IEEE--2026 2nd International Conference on Advanced Machine Learning and Data Science
CyberHunt - IEEE Big Data 2025   8th Annual Workshop on Cyber Threat Intelligence and Hunting in conjunction with the IEEE Big Data Conference
CFP-CIPCV-EI/SCOPUS 2026   The 2026 4th International Conference on Intelligent Perception and Computer Vision
Ei/Scopus-CEICE 2026   2026 3rd International Conference on Electrical, Information and Communication Engineering (CEICE 2026)
MLIOB 2026   7th International Conference on Machine Learning, IOT and Blockchain