posted by user: mayank || 10259 views || tracked by 20 users: [display]

VSI: DL-Fusion 2018 : Special issue On “Deep Learning for Information Fusion” - Information Fusion (Elsevier)

FacebookTwitterLinkedInGoogle

Link: https://www.journals.elsevier.com/information-fusion/call-for-papers/call-for-papers-for-a-special-issue-on-deep-learning-for-inf
 
When N/A
Where N/A
Submission Deadline Nov 30, 2017
Final Version Due Jul 31, 2018
Categories    deep learning   machine learning   information fusion
 

Call For Papers

Call for papers for a special issue On “Deep Learning for Information Fusion”

Information Fusion (Impact Factor: 5.667)

https://www.journals.elsevier.com/information-fusion/call-for-papers/call-for-papers-for-a-special-issue-on-deep-learning-for-inf

In the last couple of years, deep learning algorithms have pushed the boundaries for numerous problems in areas such as computer vision, natural language processing, and audio processing. The performance of advanced machine (deep) learning algorithms has attained the numbers which were unexpected a decade ago. For a given problem, information can be obtained from multiple sources and such multimodal datasets represent information at varying abstraction levels. Combining information from multiple sources can further boost the performance. Recent research has also focused on multimodal deep learning, i.e. representation learning paradigm which learns joint/combined feature from multiple sources. In this relatively new area, information from multiple sources are combined in a deep learning framework. For example, combining audio and video data to obtain joint feature representation.

This special issue focuses on sharing recent advances in algorithms and applications that involve combining multiple sources of information using deep learning. Topics appropriate for this special issue include novel supervised, unsupervised, semi-supervised and reinforcement algorithms, new formulations, and applications related to deep learning and information fusion.

Manuscripts must clearly delineate the role of deep learning information fusion. The manuscript will be judged solely on the basis of new contributions excluding the contributions made in earlier publications. Contributions should be described in sufficient detail to be reproducible on the basis of the material presented in the paper and the references cited therein.

Manuscripts should be submitted electronically at: https://www.evise.com/evise/jrnl/INFFUS

The corresponding author will have to create a user profile if one has not been established previously at Elsevier.

To ensure that all manuscripts are correctly identified for consideration in the Special Issue of Deep Learning for Information Fusion, it is important that authors select “VSI: DL-Fusion".

Deadline for Submission: November 30, 2017

Related Resources

IEEE-Ei/Scopus-ITCC 2025   2025 5th International Conference on Information Technology and Cloud Computing (ITCC 2025)-EI Compendex
IEEE-Ei/Scopus-CNIOT 2025   2025 IEEE 6th International Conference on Computing, Networks and Internet of Things (CNIOT 2025) -EI Compendex
SPIE-Ei/Scopus-DMNLP 2025   2025 2nd International Conference on Data Mining and Natural Language Processing (DMNLP 2025)-EI Compendex&Scopus
AMLDS 2025   IEEE--2025 International Conference on Advanced Machine Learning and Data Science
21st AIAI 2025   21st (AIAI) Artificial Intelligence Applications and Innovations
CSITEC 2025   11th International Conference on Computer Science, Information Technology
PCS 2025   2025 Picture Coding Symposium
SPIE-Ei/Scopus-CMLDS 2025   2025 2nd International Conference on Computing, Machine Learning and Data Science (CMLDS 2025) -EI Compendex & Scopus
Hong Kong-MIST 2025   2025 Asia-Pacific Conference on Marine Intelligent Systems and Technologies (MIST 2025)
MSEJ 2024   Advances in Materials Science and Engineering: An International Journal