posted by user: lerch || 11149 views || tracked by 9 users: [display]

ML4Music 2021 : Special Issue: Machine Learning Applied to Music/Audio Signal Processing (Electronics)

FacebookTwitterLinkedInGoogle

Link: https://www.mdpi.com/journal/electronics/special_issues/music_audio_signal
 
When N/A
Where N/A
Submission Deadline Feb 28, 2021
Categories    audio   music   machine learning   signal processing
 

Call For Papers

The applications of audio and music processing range from music discovery and recommendation systems over speech enhancement, audio event detection, and music transcription, to creative applications such as sound synthesis and morphing.

The last decade has seen a paradigm shift from expert-designed algorithms to data-driven approaches. Machine learning approaches, and Deep Neural Networks specifically, have been shown to outperform traditional approaches on a large variety of tasks including audio classification, source separation, enhancement, and content analysis. With data-driven approaches, however, came a set of new challenges. Two of these challenges are training data and interpretability. As supervised machine learning approaches increase in complexity, the increasing need for more annotated training data can often not be matched with available data. The lack of understanding of how data are modeled by neural networks can lead to unexpected results and open vulnerabilities for adversarial attacks.

The main aim of this Special Issue is to seek high-quality submissions that present novel data-driven methods for audio/music signal processing and analysis and address main challenges of applying machine learning to audio signals. Within the general area of audio and music information retrieval as well as audio and music processing, the topics of interest include, but are not limited to, the following:

- unsupervised and semi-supervised systems for audio/music processing and analysis
- machine learning methods for raw audio signal analysis and transformation
- approaches to understanding and controlling the behavior of audio processing systems such as visualization, auralization, or regularization methods
- generative systems for sound synthesis and transformation
- adversarial attacks and the identification of 'deepfakes' in audio and music
- audio and music style transfer methods
- audio recording and music production parameter estimation
- data collection methods, active learning, and interactive machine learning for data-driven approaches

Dr. Peter Knees
Dr. Alexander Lerch

Related Resources

IEEE-Ei/Scopus-ITCC 2025   2025 5th International Conference on Information Technology and Cloud Computing (ITCC 2025)-EI Compendex
From Data to Decision: Empowering Ecosys 2025   The International Society for Ecological Modelling Global Conference:
SPIE-Ei/Scopus-DMNLP 2025   2025 2nd International Conference on Data Mining and Natural Language Processing (DMNLP 2025)-EI Compendex&Scopus
LSIJ 2024   Life Sciences: an International Journal
ICSTTE 2025   2025 3rd International Conference on SmartRail, Traffic and Transportation Engineering (ICSTTE 2025)
IEEE-Ei/Scopus-CNIOT 2025   2025 IEEE 6th International Conference on Computing, Networks and Internet of Things (CNIOT 2025) -EI Compendex
MAT 2024   10th International Conference of Advances in Materials Science and Engineering
IJSC 2024   International Journal on Soft Computing
IEEE-Ei/Scopus-CWCBD 2025   2025 6th International Conference on Wireless Communications and Big Data (CWCBD 2025) -EI Compendex
CETA--EI 2025   2025 4th International Conference on Computer Engineering, Technologies and Applications (CETA 2025)