posted by user: mgns || 3898 views || tracked by 5 users: [display]

COLD 2016 : Seventh International Workshop on Consuming Linked Data

FacebookTwitterLinkedInGoogle

Link: http://dcc.uchile.cl/cold2016/
 
When Oct 17, 2016 - Oct 17, 2016
Where Kobe, Japan
Abstract Registration Due Jun 30, 2016
Submission Deadline Jul 7, 2016
Notification Due Jul 31, 2016
Final Version Due Aug 18, 2016
Categories    linked data   web   dataset   data management
 

Call For Papers

The quantity of published Linked Data continues to increase. However, applications that consume Linked Data are not yet widespread. Reasons may include a lack of suitable methods for a number of open problems, including the seamless integration of Linked Data from multiple sources, dynamic discovery of available data and data sources, provenance and information quality assessment, application development environments, and appropriate end user interfaces. Addressing these issues requires well-founded research, including the development and investigation of concepts that can be applied in systems which consume Linked Data from the Web. Our main objective is to provide a venue for scientific discourse (including systematic analysis and rigorous evaluation) of concepts, algorithms and approaches for consuming Linked Data.

The workshop will be co-located with the 15th International Semantic Web Conference (ISWC) in Kobe, Japan.

News

2016-05-24: First Call for Papers published / submission system open.
2016-04-06: The workshop has been accepted for ISWC 2016.
Important Dates

Abstract deadline: June 30th
Full paper deadline: July 7th
Author notification: July 31st
Camera-ready deadline: August 18th
Proceedings published: August 21st
Objectives

The term Linked Data refers to a set of foundational principles for publishing and interlinking structured data on the Web. After Linked Data was first proposed in 2006, a grass-roots movement, led by the Linking Open Data project, started to publish and to interlink multiple open databases on the Web following the proposed principles. Due to conference workshops, tutorials and general evangelism, an increasing number of data publishers – such as the BBC, Thomson Reuters, The New York Times, the Library of Congress, BestBuy, Getty, the US and UK government – have since adopted this practice. This ongoing effort resulted in bootstrapping the “Web of Linked Data” which, today, comprises of billions of RDF triples and millions of RDF links between datasets. The published datasets now include data about books, movies, music, radio and television programs, reviews, scientific publications, genes, proteins, diseases, medicine and clinical trials, geographic locations, people, statistical and census data, companies, and many more topics besides.

All of these published datasets are openly available on the Web in standardised interoperable formats, which presents novel opportunities for the next generation of Web-based applications: data from different providers can be aggregated, allowing fragmentary information from multiple sources to be integrated so as to achieve a complementary and more complete view. While a few applications, such as the BBC music guide have used Linked Data to significant benefit, the deployment methodology has been to harvest the data of interest from the Web to create a private, disconnected repository for each specific application. Such “harvesting approaches” are typically only feasible for vertical applications tied to specific datasets, incur a high up-front cost, and are insensitive to updates in the original data-sources. New concepts for consuming Linked Data – that do not require up-front harvesting of all sources – are required to lead the Web of Linked Data to its fullest and most general potential. The concepts, patterns, and tools necessary are very different from situations where relevant resource identifiers are known a priori, where queries can be run over complete local repositories, where access to the repository is reliable and cheap, and where relevant data sources are known to be trustworthy.

Open issues include (but are not limited to) a lack of approaches for seamless integration of Linked Data from multiple sources, for dynamic, on-the-fly discovery of available data, for information quality assessment, for querying and caching dynamic remote sources, and for implementing appropriate end-user interfaces.

These open issues can only be addressed appropriately when they are conceived as research problems that require the development and systematic investigation of novel approaches. The 7th International Workshop on Consuming Linked Data (COLD 2016) aims to provide a platform for the presentation and discussion of such approaches. Our main objective is to attract submissions that present scientific discussion (including systematic evaluation and/or formal results) of broadly-applicable concepts and approaches.

Topics of Interest

While previous editions of the workshop have attracted a number of submissions that addressed topics related to (RDF and) Linked Data management in general, with COLD 2016 we aim to continue steering the workshop back towards the aforementioned core goals. To this end, we explicitly seek submissions that address research problems related to at least one of the following two aspects of Linked Data consumption:

Makes use of Linked Data principles, including dereferencing
Involves direct use of multiple, real-world Linked Datasets
In the context of these two aspects of Linked Data consumption, relevant topics for COLD 2016 include but are not limited to:
Live Linked Data (i.e., algorithms and applications that make use of Linked Data at runtime)
Architectures for consuming Linked Data (e.g., Dataspaces, Cloud, NoSQL)
Integration of Linked Data sources (e.g., entity resolution, sameas, vocabulary mapping, etc.)
Handling additional Web data (e.g., Deep Web, APIs, Microdata, JSON, Atom, tables, etc.)
Web-scale data management (e.g., crawling, indexing, parallel processing, etc.)
Novel languages for navigating and consuming Linked Data (e.g., nSPARQL, NautiLOD, etc)
Linked Data summarisation, guides and schema learning
Query processing over multiple Linked Datasets
Search over the Web of Linked Data
Auto-discovery of URIs and data
Caching and replication
Dataset dynamics
Reasoning on Linked Data from multiple sources
Information quality and trustworthiness of Linked Data
User-interface research for interacting with the Web of Linked Data
Submissions

We seek novel technical research papers in the context of consuming Linked Data with a length of up to 12 pages.

All submissions must be in English. Paper submissions must be formatted in the style of the Springer Publications format for Lecture Notes in Computer Science (LNCS).

We accept submissions in PDF but also encourage submissions in HTML. In the latter case, you should submit a ZIP archive containing all of the necessary files. If you are new to HTML submissions, you may find the following useful:

dokieli is a client-side editor for publishing HTML articles, compliant with the Linked Research initiative. There are a variety of examples available online, where the LNCS template and example paper may be particularly useful.
The Research Articles in Simplified HTML (RASH) Framework provides a terse markup language for writing scientific articles in (X)HTML+RDFa.
Please note that independently of the format used, we require articles to be submitted in LNCS format and to abide by the permitted font sizes, font selection, margins, etc., irrespective of the format used. This is to ensure visual consistency of the proceedings as well as to have comparative page limits. Submissions not conforming to the LNCS format or papers that are exceed the page limit will be rejected without review.

Please submit your paper via EasyChair at https://easychair.org/conferences/?conf=cold2016

We note that the author list does not need to be anonymised, as we do not have a double-blind review process in place.

Submissions will be peer reviewed by three independent reviewers. Accepted papers have to be presented at the workshop to be published in the proceedings. Proceedings will be published online at CEUR-WS.

Related Resources

IEEE-Ei/Scopus-ITCC 2025   2025 5th International Conference on Information Technology and Cloud Computing (ITCC 2025)-EI Compendex
ACM ICCDE 2025   ACM--2025 11th International Conference on Computing and Data Engineering (ICCDE 2025)
SPIE-Ei/Scopus-DMNLP 2025   2025 2nd International Conference on Data Mining and Natural Language Processing (DMNLP 2025)-EI Compendex&Scopus
DATA 2025   14th International Conference on Data Science, Technology and Applications
ICoSR 2025   2025 4th International Conference on Service Robotics
ICBDA 2025   IEEE--2025 the 10th International Conference on Big Data Analytics (ICBDA 2025)
ACM SAC 2025   40th ACM/SIGAPP Symposium On Applied Computing
ALLDATA 2025   The Eleventh International Conference on Big Data, Small Data, Linked Data and Open Data
FRUCT37   The 37th IEEE FRUCT Conference
IEEE BDAI 2025   IEEE--2025 the 8th International Conference on Big Data and Artificial Intelligence (BDAI 2025)